Pathway Analysis and Optimization
in Metabolic Engineering

NESTOR V. TORRES

Universidad de La Laguna, Canary Islands, Spain

EBERHARD 0. VOIT

Medical University of South Carolina

2% CAMBRIDGE

QW UNIVERSITY PRESS



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcén 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http:// www.cambridge.org
© Cambridge University Press 2002

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2002

Printed in the United States of America

Typefaces Sabon 10/13 pt. and Franklin Gothic System KTEX 2¢  [TB]
A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Torres, Néstor V., 1958—
Pathway analysis and optimization in metabolic engineering / Néstor V. Torres,
Eberhard O. Voit.

p. cm.
Includes bibliographical references and index.
ISBN 0-521-80038-2

1. Biochemical engineering — Mathematical models. 2. Mathematical optimization.
3. System theory. L. Voit, Eberhard O. II. Title.

TP248.3 . T67 2002
660.6'3 — dc21 2002071511

ISBN 0 521 80038 2 hardback



Contents

Preface page ix
1 Target: A Useful Model 1
2 Methods of Biochemical Systems Theory 42
3 A Model of Citric Acid Production in the Mold Aspergillus niger 75
4  Optimization Methods 134
5 Optimization of Biochemical Systems 162
6  Optimization of Citric Acid Production in Aspergillus niger 197
7  Maximization of Ethanol Production in Saccharomyces cerevisiae 227
8 Conclusions 273

Author Index 291

Subject Index 299

Color section follows p. 146.

vii



CHAPTER ONE

Target: A Useful Model

CRITERIA FOR MODEL SELECTION

Before we get lost in the technical details of manipulating functions, approximating
complicated phenomena, or designing and analyzing models, it is useful to establish
more clearly what exactly our target is. At a superficial level, this is easily stated. Our
target is a mathematical model of the biotechnological phenomenon of interest, and
this model should be valid, yet convenient for analysis, manipulation, and optimiza-
tion. Once we have such a model, we can screen hypotheses and perform test runs
on the computer, which is much faster and cheaper than implementing and executing
the actual experiments in the lab.

While the target is obvious, the difficulty is that no unique, optimal model entirely
satisfies all items on our wish list. Why is that? The complications begin with the
question of validity. What is a valid representation of a particular phenomenon? Al-
though initially surprising, the question of validity is not something absolute. Instead,
validity depends heavily on the purpose of the model analysis. A model for studying
the aerodynamics of a butterfly will normally not account for the color patterns of
its wings, and that is probably a valid omission. By contrast, the coloration may be
crucial for ecological questions of camouflaging and predation by birds.

As a familiar, yet illustrative example, consider the growth of a bacterial popu-
lation (Thornton 1922), as discussed by Lotka (1924, pp. 70-1; see Table 1.1 and
Figure 1.1).

The symbols in the figure show the observed size of the bacterial colony over time,
and the line is the graph of the logistic function

Yo 0.2524
~ exp(0.005125 — 2.1281)°

(1.1)

Inspection of Figure 1.1 suggests that the function S(¢) fits very well. Nonetheless, as
the table indicates, there are discrepancies between observed and computed values.
Can the logistic function be considered a valid representation, even though it under-
estimates the true colony size at day 1 by almost 30%? There is no definite answer.

1



2 PATHWAY ANALYSIS AND OPTIMIZATION IN METABOLIC ENGINEERING

Table 1.1. Observed and Calculated
Growth of a Bacterial Population
(Adapted from Lotka 1924)

Area in cm?

Age of Colony

(Days) Observed Calculated
0 0.24 0.2511

1 2.78 2.0324
2 13.53 13.0761

3 36.3 37.0479
4 47.5 47.3930

S 49.4 49.0231

Obviously, the function captures the saturating trend in colony growth and returns
sizes reasonably close to those observed. Furthermore, some error no doubt exists in
the data, which might account for the inaccuracies. After all, even in the ideal case
of perfectly circular colonies, the calculated and observed colonies at day 1 differ by
merely one-twentieth of an inch in radius. This simple analysis suggests that good
data fit alone is not a reliable criterion for the validity of a model.

Another aspect of the same example is whether the logistic function “explains”
anything. On one hand, the function allows us to make relatively accurate predic-
tions about the size of the colony between observations and beyond the observation
period. For instance, the function would have predicted the colony size at day 5 quite
accurately, even if it had not been measured. This power of prediction implies that
the model provides a certain degree of explanation. On the other hand, the parameter
values of the function (0.2524, 0.005125, and —2.128) are not meaningful, or even
measurable quantities that could be obtained from the bacterial colony itself. If we
had a new colony, these parameter values would most probably not be optimal. Also,
the simple logistic “model” does not capture any of the biological phenomena that
underlie the growth of the bacteria, their biochemistry, or their physiology. If we
wanted to predict the growth of the same type of colony under the influence of a
growth inhibitor, this model alone would not be too helpful.

In conclusion of the present discussion of validity, we must distinguish what is im-
portant to capture in a given model and what can be ignored. In the biotechnological

Growth of Bacterial Colony
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setting of a microbial culture or chemostat, typical variables of interest are metabo-
lites, enzyme activities, fluxes, and controls such as pH, temperature, oxygen content,
cofactors, and of course substrates. The physical shape of the involved molecules is
clearly of importance for the enzyme-catalyzed reactions to proceed, but for typi-
cal batch processes it is often of secondary interest. Thus, returning to the issue of
identifying our target, we envision a model that allows us to ask questions about
changes in fluxes, metabolite concentrations, microbial population sizes, the relative
importance of fluxes that funnel material through the system of metabolic pathways,
and the effects of substrates and modulators. The model should enable us to map rel-
evant observations into a mathematical realm, which would then allow us to execute
“virtual experiments” and explore hypothetical scenarios.

Validity is certainly important, but it is not the only criterion in the selection of
a model. A second requirement for a good model is its mathematical tractability.
Only a model that permits effective evaluation, preferably both algebraically and
computationally, has the potential of becoming a general tool in an applied science.
We shall see in the next sections that some of the traditional models of enzyme
kinetics are very useful for studying individual processes, but that they can become
mathematically unwieldy in a network of just a few pathways.

If we had no history of modeling biochemical phenomena, our first stab at a useful
model would probably be some linear system. The reason for this choice would be
that no other branch of mathematics offers as rich a repertoire of theorems, methods,
and tools as linear mathematics, and validly representing our phenomena of interest
with linear methods would be half the battle. However, it has been said that focusing
on linear functions within the huge realm of nonlinearities is like dividing the animal
kingdom into elephants and non-elephants. Indeed, if one goes by the number of
all possible mathematical structures, linear models are negligible. Even so, it is still
often well worth considering linear systems, because they have very many unique
and desirable features. This will become apparent throughout the book.

The drawback with linear functions in a biotechnological context is that they are
often simply not appropriate descriptions of natural phenomena. For instance, es-
sentially all processes in living organisms saturate if the dependent variable becomes
very large. The growth of a population may be linear or exponential (i.e., linear in
the logarithm) for small population sizes, but eventually the growth cannot continue
unabated and the growth function ultimately flattens. Another limitation of linear
models is their inability to represent stable oscillations that return to their original dy-
namics after a small perturbation. There are many oscillatory phenomena in biology,
and many of them are stable in this sense. The inability of linear models to capture
these oscillations is therefore a drawback. The same applies for chaotic responses,
which also require nonlinear descriptions.

If linear functions are not justified, one has three options for model selection.
First, one could use linear functions anyway and accept the consequent inaccuracies.
This may sound like too drastic a simplification, but much of engineering is based
on linear systems, and the enormous accomplishments of engineering attest to the
validity of this approach. However, a crucial difference between engineering and
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0.5

y

Figure 1.2. Function z = 0.25 - sin[5x (x2 + y2)/2] of two independent variables, x and y, and its
“wiremesh” representation, which corresponds to a two-dimensional piecewise linear approxima-
tion, if each quadrilateral is dissected into two triangles.

biology is that engineers are often in a position to design systems according to their
own specifications, and these may include linear response functions. Biologists, by
contrast, must live with what nature presents, and that is usually nonlinear.

The second option is using a piecewise linear representation. To represent a func-
tion in this fashion, one replaces it with sufficiently many small linear pieces, and
the analysis shifts from piece to piece, depending on the value of the dependent
variable. The analogous procedure may be applied to higher-dimensional functions
(Figure 1.2).

Obviously, the smaller the individual pieces, the closer the agreement between
the piecewise linear model and the modeled nonlinear reality. But, of course, there is
again a drawback: smaller individual pieces require more breakpoints or “breaklines”
between adjacent pieces and thus complicate the computational implementation and
analysis.

The third option is to accept and confront the nonlinearities as they appear.
The challenge here is that the true structure of the nonlinearity is seldom known.
Even smooth and nearly error-free data that show a nonlinear trend do not uniquely
identify the mathematical form of the underlying function. As an example, consider
fabricated “data” with modest experimental error from a simple saturated process
(Figure 1.3). Without further information, these data could be adequately modeled
by a variety of functions, such as a shifted Hill function fi(x), an arctangent f>(x) or
logistic function f3(x), or even a statistical distribution function f4(x). The function
f4(x) is the cumulative of the normal distribution N(1.7, 1.2), multiplied with 1.85.
Similarly, other cumulative frequencies, like Student’s ¢-distribution, could be used to
model the data. Even the sine function f5(x) = 0.8 - sin(0.82 - x + 4.8) + 1 fits rather
well.

The point of this comparison is that the criterion of a close data fit is rather weak
and unreliable. In particular, a good data fit alone does not provide strong guidance
for model selection. Sorribas, March, and Voit (2000) reached a similar conclusion
in the context of identifying the best-fitting statistical distribution for a given data
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Figure 1.3. Numerous functions provide pleasing fits to the fabricated data in the top left
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panel. Shown here are a shifted Hill function (fi(x) = 552> +0.2), an arctangent function
(fao(x) = 0.77 -arctg(0.9x — 1.6) + 1), a logistic function (fs(x) = ——+2—_), a stretched nor-

1 1+exp(2.2—1.3x)

mal cumulative (fa(x)= ;% X exp(— 55 (u — 1.7)2)du), and a sine function (fs(x)=0.8-

sin(0.82 - x + 4.8) + 1). The data fit alone is not sufficient to prefer any of these functions to
an alternative.

set. They drew random numbers from a given distribution and showed that in a high
percentage of cases these data were better fitted by a different distribution than the
original that had been used to generate the random numbers.

With no reliable guidance from a graph of data, one has two choices of model
selection. One may use a black-box model that fits the data as the logistic func-
tion fits the measured bacterial growth data and the functions f; through fs fit the
manufactured data in Figure 1.3. A function found this way is often simple and
robust, but its explanatory value is limited, as discussed previously. The alternative
approach is to search for valid descriptions of the underlying processes. In most bi-
ological phenomena, these processes are not isolated but highly interconnected, and
if we are to capture the essential features of these phenomena, we must find effective
mathematical ways of representing systems.

The following sections describe some approaches to developing explanatory can-
didate models. We begin with a very brief review of the derivation of the best-known
biochemical model, the Michaelis—Menten rate law. This rate law has proven ex-
tremely useful for the analysis of individual reactions in vitro, and thousands of
articles deal with the characteristic parameters of this rate law, the Michaelis constant
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K, and the maximal velocity of the reaction, V... Although widely used, the
Michaelis—Menten rate law has serious disadvantages. Again, they fall in two cate-
gories: validity and tractability. Some generalizations of the original rate law over-
come problems with the validity of the underlying assumptions. However, these gen-
eralizations exacerbate the challenges of tractability. Ultimately, rate laws of this type
lead to so many mathematical and biological challenges that we have to search for
other solutions.

The proposed solution in this chapter, and indeed throughout this book, is to
use power-law approximations of processes. The advantages of these approxima-
tions include a relatively wide range of validity, mathematical justification, a good
fit to observations, and the feature of scale-invariance, which has also been called
the telescopic property (Savageau 1979a, 1985). Whether the system is small or
large, whether a process involves two or 200 variables, whether the model addresses
a phenomenon at a low or a high level of biological organization, the mathemat-
ical structure of these representations remains the same. This scale-invariance has
tremendous implications, from both a conceptual and a practical point of view.

MODELS OF BIOCHEMICAL PROCESSES

Fortunately, our search for the best mathematical representation of a biochemical sys-
tem does not have to start from scratch. In fact, the history of quantitatively studying
chemical and biochemical processes is almost 200 years old. Three major roots of
today’s understanding of biochemical processes and networks are thermodynamics,
kinetics, and stoichiometry. We summarize some key findings of these disciplines,
and proceed by identifying approaches that offer a good balance between validity,
justifiability, interpretability, and mathematical effectiveness and efficiency.

Thermodynamics

Biological systems are based on physical principles. They must satisfy the laws of
physics just like any other entity in the physical world. Among the laws and princi-
ples of physics, the results of thermodynamics are of particular interest for chemical
and biochemical processes, because they govern the relationships between mass, en-
ergy, work, and heat. They describe which processes are possible and which are
energetically infeasible. As Callen (1960) put it, “Thermodynamics is the study of
the macroscopic consequences of myriads of atomic coordinates, which, by virtue
of statistical averaging, do not appear explicitly in a macroscopic description of a
system.” Many theoretical results of thermodynamics were first observed in experi-
ments addressing questions that related energy to pressure, temperature, and volume
in ideal gases. Only later were the results formulated as laws and corollaries. “The
basic problem of [classical] thermodynamics is the determination of the equilibrium
state that eventually results after the removal of internal constraints in a closed com-
posite system” (Callen 1960, p. 7). A simple example is the observation that coffee,
if left to its own devices, after a while assumes room temperature.
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A significant finding of thermodynamics is that systems tend toward states of
minimal energy. In terms of biological systems, this is quite counterintuitive, because
organisms apparently violate these laws all the time. Plants generate high-energy
compounds like complex sugars out of lower-energy substrates like CO, and water,
which contrasts simple thermodynamic arguments that would postulate the opposite,
namely the degradation of high-energy compounds into lower-energy compounds.
Even though organisms have tasks that require increases in energy, they cannot simply
ignore or violate the laws of thermodynamics but instead must find ways to complete
their tasks in spite of them.

Many books have been written on thermodynamics, some by celebrated scien-
tists such as Max Planck (1945) and Enrico Fermi (1956). These treatises address
the topic from a purely physical viewpoint and often use mathematical concepts of
considerable sophistication. A reasonably intuitive introduction to the area from a
biological perspective is Jou and Llebot (1990); the discussion below more or less
follows this book. Katchalsky and Curran (1967), Westerhoff and van Dam (1987),
and Heijnen (2001) also treated the topic in the context of biological processes. Two
more general texts are Callen (1960) and Kestin (1966).

The first law of thermodynamics asserts that the change in energy within a closed
system, which does not gain or lose matter, is equivalent to the sum of heat and
of energy-increasing work that the system receives from the outside. Hermann von
Helmbholtz (1821-94) formulated this law as the widely acknowledged impossibility
of constructing a perpetuum mobile, a machine of perpetual motion (of the first kind)
that would indefinitely produce more energy than it received (Gerthsen and Kneser
1971).

The second law further limits possible transitions within a system. It asserts that
heat does not pass spontaneously from a cold to a hot body, unless other processes
are in effect. Such a transition would be possible according to the first law, according
to which the overall state of energy remains constant, but is not possible according
to the second law. The second law is not only valid for isolated systems but also can
be formulated to include more realistic, nonisolated systems. Such systems are closed
with respect to matter, but exchange heat and work with the environment. The vast
majority of biological systems are nonisolated and, furthermore, open with respect to
the flux of matter. Their openness presents a significant challenge for thermodynamic
considerations.

One reformulation of the second law of thermodynamics is based on Gibbs’ (1839-
1903) concept of free energy, which is defined as the sum of the internal energy of
a state of the system and the product of pressure and volume, from which the prod-
uct of temperature and entropy is subtracted. The entropy characterizes the current
state of the system and, in some sense, is a measure of the disorder or statistical ho-
mogeneity of its molecules (see Callen 1960, Appendix B for intuitive explanations
of the concept of entropy). Highly structured systems have low entropy, whereas
unstructured systems have high entropy. In this terminology, the second law of ther-
modynamics states that the change in Gibbs free energy must be less than zero for
any spontaneous process in a closed system that operates under constant pressure
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and constant temperature. Expressed differently, the entropy in such a system cannot
decrease and the order cannot increase.

Instead of supposing that pressure and temperature are constant, other variables,
such as the internal energy of the system and the volume could be considered constant.
Each set of variables that are assumed to be constant yields a different constraint in
the other variables, and these constraints are called thermodynamic potentials. In
closed systems, the different thermodynamic potentials are in a sense equivalent,
and each contains all the thermodynamic information about the systems, such as
specifications of the equilibrium state to which the system moves, including stability
of this state, characteristics of phase changes, and relationships between the various
thermodynamic quantities.

If expressing similar phenomena in different ways seems confusing, be consoled
by Callen (1960, p. 85), “The peculiar multiplicity of formulation and reformulation
of the basic thermodynamic formalism is responsible for the apparent complexity of
a subject which in its naked form is quite simple.” This simplicity stems from the fact
that essentially all thermodynamic constraints are computed as partial derivatives of
one and the same function, which describes the energy status of the system.

If the system is open, the thermodynamic potentials are not only functions of
temperature, volume pressure, and free energy, but also of the numbers of moles
of each chemical species present. The change in energy that accompanies a change
in the number of moles is called the chemical potential. The chemical potentials
of all species (types of molecules) relate to the internal energy of the system in a
fashion analogous to temperature. For instance, two connected systems exchange
energy until both attain the same temperature, and two connected compartments
containing different chemical species move toward molecular homogeneity. In both
cases, the systems move toward the state of maximal entropy, and one can show that
this state corresponds to one of minimal energy. This has significant implications for
the characterization of such phenomena as osmotic pressure, diffusion, freezing point
depression, and boiling point elevation. The tendency of systems toward a state of
lower energy can be observed macroscopically. As early as 1872, Ludwig Boltzmann
(1844-1906) furthermore showed that this tendency could be explained in terms of
microstates, which correspond to locations and properties of individual molecules.
The use of probabilistic arguments for predictions of transitions between macrostates
has led to the subfield of statistical thermodynamics.

Alberty (1994) reviewed thermodynamic concepts for systems consisting of chem-
ical and biochemical reactions. The equilibrium in such a system is affected by the
ionic milieu and typically changes if the pH is altered. Ion effects on changes in free
energy are particularly important for reactions involving nucleic acids, proteins, and
other polyelectrolytes. To account for these effects, Alberty (1994, 2000) proposed
to include the pH as an additional independent variable in thermodynamic computa-
tions, just like temperature, volume, pressure, and chemical potentials, and to redefine
fundamental quantities like the Gibbs free energy and entropy correspondingly.

Although classical thermodynamics has been called “one of the outstanding
achievements of the scientific mind” (Katchalsky and Curran 1967), it is limited
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in scope, because it provides a theory for systems that are either in equilibrium or
are undergoing reversible processes. Idealized physical systems may satisfy these re-
quirements, but biological systems rarely do so. Organisms are nonisolated and open,
regularly exchanging not only heat, but also matter. Equilibrium states and transi-
tions between them, which constitute the cornerstone of classical thermodynamics,
are not as relevant for an organism, because equilibrium would mean death. Instead,
biological systems operate at nonequilibrium stationary states. These states are char-
acterized by influxes and effluxes of matter and energy that are in balance and keep
the concentrations of all chemical species (more or less) constant over time. Such
states can only be maintained by an external supply of energy.

Nonequilibrium thermodynamics thus deals with questions of energy that are
linked to transport and metabolism in open, dissipative systems, which require the
influx of energy. These systems usually contain irreversible processes, which Callen
(1960) defines as requiring an increase in entropy. All systems in the real world are
of this type. Dissipative systems must overcome the constraints given by the laws of
thermodynamics through the coupling of two or more processes. One process leads
to a structure with higher energy and lower entropy, thereby running in the direction
opposite to the one predicted by its thermodynamic affinity. The energetic gain in this
process, which apparently violates the second law of thermodynamics, is “paid for”
by energy released in a concomitant reaction that supplies energy and moves in the
direction predicted by its thermodynamic affinity. A typical example is the coupling
of phosphorylation with oxidation. Phosphorylation is crucial for the storage of
chemical energy; probably the most prominent case is the conversion of ADP into
ATP. The increase in energy during this process is coupled with energy transfer from
another reaction, such as the oxidation of NADH to NAD™. In animals, the external
energy supply is chemical, whereas plants, of course, may also use sunlight for some
of the reactions that lead to higher-energy compounds.

Nonequilibrium thermodynamics allows the estimation of energy requirements
in dissipative systems, the extent and stoichiometry of reactions or pathways, and
the degree of coupling among them. It also characterizes the efficiency of coupled
reactions, which is defined as the ratio of free energy consumed in one direction over
the energy liberated in the opposite direction. For example, it permits the estimation
of the number of moles of oxygen needed for the phosphorylation of one mole of
ADP and the computation of the efficiency of photosynthesis. Deductions from the
principles of nonequilibrium thermodynamics have also led to the insight that, in
the vicinity of the thermodynamic equilibrium, stationary nonequilibrium states are
characterized by minimum entropy production (Prigogine 1947/1955). At such a
state, the system loses minimal amounts of free energy and is energetically most
economical, which might be a rationale for the uncounted control mechanisms with
which organisms tend to preserve this state (Katchalsky and Curran 1967). Overall,
nonequilibrium thermodynamics provides a collection of constraints that observed
or hypothetical reactions in vitro and in vivo must satisfy. Ricard (1999) provides
good explanations of the relationships between nonequilibrium thermodynamics and
chemical and biochemical rate equations.
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An intrinsic feature of the thermodynamic approach is its strict focus on energy,
which almost completely excludes time. Thus, a typical result characterizes the en-
ergetic possibility or likelihood of a reaction, but it gives no indication whether this
reaction occurs on a time scale of seconds or years. Sometimes, temporal consid-
erations are not necessary, but in other cases timing is crucial. If that is the case,
thermodynamics is usually not the optimal approach, and one will instead focus on
kinetic representations of reactions.

Kinetics

Thermodynamics and kinetics are not entirely unrelated. In fact, kinetics may be
considered an “empirically based form of generalized thermodynamics” (Westerhoff
and van Dam 1987). Kinetics does not focus on energy levels as much as thermody-
namics. Instead, it addresses the temporal aspects of a reaction. How fast does the
reaction proceed? What is the half-life of a metabolite? What affects the speed of the
reaction? Certainly, answers to these questions involve thermodynamics at a deeper
level, but kinetic studies minimize aspects of energy and instead center directly on
metabolite concentrations and fluxes, as well as their fluctuations over time.

In the overwhelming majority of studies, kinetic analyses ignore spatial features.
Instead, it is implicitly assumed that all participants of a reaction are available in
a homogeneous mix. It is also typically assumed that the substrate concentration
is much higher than the enzyme concentration, so that the availability of enzyme
drives the process. Some newer studies have questioned some of these assumptions
and propose alternative descriptions. We will discuss a few of them throughout the
chapter.

The typical chemical or biochemical rate function relates the temporal change in
a chemical compound or metabolite concentration to the concentration itself. In the
simplest case of a first-order degradation process that does not involve an enzyme,
the rate is directly proportional to the concentration. In straightforward notation,
this elemental chemical reaction reads

v(X) = —kX. (1.2)

The rate constant k is positive by definition, because it represents the turnover per
time unit, which cannot be negative. The negative sign indicates that material X is
actually lost from the existing pool. The mathematical form of the equation results
from considerations of statistical thermodynamics that go back more than a hun-
dred years to Svante Arrhenius (1859-1927). Details can be found in textbooks on
thermodynamics and kinetics.

Because the rate v(X) represents the change in concentration over time, we can
write it as a derivative with respect to time, namely

ax .
- = X =—kX (1.3)

In kinetic studies, the differentiation variable is almost always time, #, and it is
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becoming customary to denote the derivative with the dot notation, as indicated
in Eq. (1.3). This notation is somewhat simpler, but does not explicitly identify time
as the independent variable.

It might be illustrative to relate the kinetic equation to concepts of statistical
thermodynamics. Following the exposition of Westerhoff and van Dam (1987), we
consider a simple irreversible reaction

A—-B+C

and denote the number of molecules of substrate A at time ¢ with x. From a mecha-
nistic point of view, it is almost impossible to predict when a given substrate molecule
will be converted into molecules of types B and C. However, if there are very many
molecules of type A, statistical thermodynamics allows us to consider the conversion
of any given molecule as a probabilistic process. Because no mechanism replenishes
A, the number x can only decrease over time. Specifically, one can formulate the
probability of a drop from x to x — 1 during a small time interval Az as

Plx,t > x—1,t+ At) =k -x- At, (1.4)

where k is some constant. If Az is chosen to be small enough, there will be no drop
from x to x — 2, x — 3, etc. within At. If we let P,(¢) denote the probability that there
are x substrate molecules at time #, we can formulate the probability for x molecules
at time ¢ + At as

Pt + At)=k-(x+1) - At- Ppy1(2) + (1 — k- x - At) - Py(2). (1.5)

This so-called master equation expresses in the first term on the right-hand side the
probability of a transition from x + 1 to x molecules and in the second term the
probability that the number does not fall further from x to x — 1. If At is decreased
toward zero, Eq. (1.5) becomes a set of differential equations, each of which describes
the dynamics of a given number x of molecules in the system. These equations can be
solved, and one can compute the expected (average) number x of substrate molecules
at any given time. The result is

X =xp-exp(—k-t), (1.6)

where xj is the initial number of substrate molecules. This equation is exactly the
solution to the differential equation (1.3), which constitutes the macroscopic, kinetic
description of the reaction. The derivation based on master equations demonstrates
that the introduction of stochastic elements compensates for our lack of precise
knowledge of the molecular state of the system. The details of this derivation and
further extensions are found, for instance, in Westerhoff and van Dam (1987).

As an embellishment to the simple degradation of a substrate A, suppose Xj is
converted into X, in an elemental chemical reaction. Because no material is lost in
this ideal situation, the production of X, equals the degradation of Xj, but with
opposite sign, because one increases and the other decreases. Thus, we can write the
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process as a small system with two variables:

X] = —kX]

) (1.7)
X, = kX;.

(Note that time does not count as a variable in these types of discussions.) The
solution of the linear differential equation (1.3) is an exponential function of time.
Thus, the time dependence of X is nonlinear, but the function describing the process
corresponds to a differential equation whose right-hand side is linear.

The linear differential equation (1.3) is not only used for elemental chemical reac-
tions. Of relevance to our discussion are simple reactor and chemostat designs (Bailey
and Ollis 1977). It is also often assumed as the default for outflow from well-stirred
reactors, for generic decay and growth processes, and for standard compartment
models (e.g., Edelstein-Keshet 1988; Jacquez 1996).

If two metabolites are involved in a bimolecular reaction, their concentrations
enter the right-hand side of the (differential equation) rate law as a product. In the
generic case where Xj and X, are substrates of such a reaction that generates product
X3, the increase in the concentration of Xj is given as

Xz = k3 X1 Xo. (1.8)

It is noteworthy that this type of process leads to a product in its substrate concen-
trations and not a sum, even though one might speak of “adding a second substrate”
or formulate the reaction as Xj; + X, — Xj. The reason for the product form of the
rate law lies partly in thermodynamics and partly in the fact that the two molecules
have to come into physical contact. In a homogeneous mixture, the latter is a matter
of probability, which suggests as the simplest model a formulation as product.

In the case of Eq. (1.8), the concentration of Xj increases, and therefore the right-
hand side does not carry a minus sign. Notice that X5 does not appear on the right-
hand side. It does not affect its synthesis and depends entirely on the availability of
both Xj and X;. For every molecule of Xj that is produced, one molecule of X; and
one molecule of X; disappear. Therefore, the loss in either one substrate is

X i=X=-X3=-kXX. (1.9)

One may discuss whether there are reactions that truly involve more than two sub-
strates or whether such reactions are in fact sequences of bimolecular reactions.
Regardless, theory suggests that such reactions would again be described with dif-
ferential equations whose right-hand sides consist of products of substrates. For
instance, suppose one molecule of X; and two molecules of X, would be converted
into product Xj3. The describing rate equations would be

X; = ks X1 X3,
X =~k X, X3, (1.10)
X, = -2k X1 X3.
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The exponent 2 associated with X; indicates that two molecules are used. It is con-
sistent with the product of X; and X; in the bimolecular reaction. One says that the
process is of (kinetic) order 1 with respect to Xj and of (kinetic) order 2 with respect
to X;. Note that the rate constant is doubled in the last equation to indicate that X,
disappears at twice the rate of Xj and at twice the rate of the synthesis of X3.

Westerhoff and van Dam (1987) pointed out that kinetic details of elemental pro-
cesses could always be incorporated in thermodynamic descriptions. As an example,
they considered a simple reaction with one substrate S and one product P. The typi-
cal kinetic description of the process is some rate function of the two independent
variables S and P. However, one could also express the independent variables as
log([S]/[P]) and [S] + [P]. The first of these terms is directly related to the thermody-
namic concept of the affinity of the reaction, which demonstrates that concentrations
can readily be transformed into thermodynamic forces.

The Michaelis-Menten Rate Law

In the early 1900s, Michaelis and Menten (1913) proposed a reaction scheme for
enzyme-catalyzed reactions, based on earlier ideas of Henri (1903). They postulated
that a substrate S and its catalyzing enzyme E form an intermediate complex (ES) in
a reversible reaction. Once formed, this complex would break apart and either return
substrate and enzyme or yield product P while simultaneously releasing the enzyme
molecule unchanged. The typical diagram including rate constants for the process is
shown in Figure 1.4. In this simple form, synthesis of product from the intermediate
complex is assumed to be irreversible; in other words, there is no reaction with rate
k_s.

Equipped with rate equations for bimolecular reactions (between substrate and
enzyme), the formulation of equations is straightforward. One obtains

S =—k(ES), (1.11a)
(ES)=kiS-E— (k1 + k) (ES), (1.11b)
P = k(ES). (1.11c)

The easiest way to understand the equations is to go backward. The equation for the
synthesis of product P is a simple elemental reaction with rate k,, whose substrate is
the intermediate complex (ES). The change in the concentration of the intermediate
complex is governed by three processes: the bimolecular reaction involving substrate
S and free enzyme E; the reverse reaction with rate k_1, in which the intermediate
complex (ES) breaks down into enzyme and substrate; and the forward reaction with
rate k; that leads to the generation of product. Stoichiometry between substrate and
product and the quasi-steady-state assumption discussed next require the change in
substrate to be the negative of the synthesis of product.

Figure 1.4. Diagram of an enzyme-catalyzed reaction k A

1 2
—_—
mechanism according to Henri, Michaelis, and Menten. S+E 3 k., (ES) P+E
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The system of equations describes the conversion of substrate into product over
time. Its main assumption is that the laws of elemental chemical kinetics apply, which
require that the reaction proceeds in a homogeneous mixture and that enough sub-
strate and enzyme are available to justify the probabilistic arguments underlying the
theory of chemical kinetics. The differential equations can be solved with a numer-
ical integrator, such as the Runge-Kutta or Gear algorithms, which are available in
standard software packages for mathematical analysis.

Further assumptions are necessary to obtain the familiar form of the (algebraic)
Michaelis—Menten rate law. Like many authors, Schulz (1994, Chapter 1, p. 8) lists
the following four

Assumption 1: Er=E + (ES)
Assumption 2: St> Er
Assumption 3: Er=(ES)=0
Assumption 4: Py=0

The first assumption is an enzyme conservation expression indicating that the total
enzyme concentration, Er, can be divided into free enzyme and enzyme bound in
the intermediate complex. The second assumption states that the total substrate
concentration St is much larger than the total enzyme concentration Et. The third
statement is called the quasi-steady-state assumption. Its first part, ET = 0, asserts
that no enzyme is formed or lost during the process; it is usually accepted as true,
at least in vitro. The second part, (ES) = 0, is more critical. It presumes that the
concentration of the intermediate complex is constant. This assumption is clearly
violated at the beginning of the experiment. Furthermore, it implies that the reactions
forming and destroying the intermediate complex are much faster than the overall
conversion of substrate into product. The fourth assumption is made for convenience
and could be dropped. It just says that no product is present at the beginning of the
experiment.

The algebraic form of the Michaelis—Menten rate law derives from Egs. (1.11b)
and (1.11c), the quasi-steady-state assumption, and the formulation of P as the rate
vy. The result is

0=k S-E—(k_1+k) (ES) (1.12a)
v, = ky(ES). (1.12b)
Assumption 1 allows us to replace (ES) with the difference between the constant

quantity E7 and E. Simple algebra then leads to the so-called Briggs—Haldane (Briggs
and Haldane 1925) formulation of the rate as

klszTS

= - - 1.1
vp ki+k +kS ( 3)

It is customary to rearrange the parameters and define the Michaelis constant

Ky = (k1 +k)/ ki (1.14)
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and the maximum velocity
Vmax = kZET~ (115)

With these new parameters, the Michaelis-Menten rate law has the familiar form

U _ VmaXS
P Ky+ S

(1.16)

This form of the rate law, along with many generalizations, has been immensely
successful in the characterization of enzymes and the analysis of simple pathways
in vitro.

As modelers, we must ask whether this formulation is optimal. Following the
arguments earlier in the chapter, we should judge the rate law against two criteria:
validity and mathematical convenience.

Validity
The Michaelis—Menten rate law was conceived almost one hundred years ago. For
several decades afterward, it was more or less accepted as probably true, and its appli-
cability and validity were not much questioned. However, beginning in the 1970s, the
critical assumptions leading to the rate law were more thoroughly scrutinized. Doubts
arose as to whether the mechanisms that seemed to work well in vitro would also be
operational in vivo. Specific questions targeted the alleged homogeneity within the
cell, the validity of the steady-state assumption, the ample availability of substrate,
and the dependence of the rate law on conditions like the pH (Roberts 1977). The
culmination of these doubts might have been the title of an article by Hill, Waight,
and Bardsley (1977), “Does any enzyme follow the Michaelis—-Menten equation?”
Detailed discussions of these issues can be found in Savageau (1992a, 1995a,b) and
Schulz (1994).

Schulz (1994, p. 22ff) analyzed Assumptions 2 and 3 in some detail. Assumption
2 requires the substrate to be available in such excess that its concentration is more
or less constant. In particular, is supposes that the fraction of substrate bound to
enzyme is insignificant throughout the assay. Most in vitro systems probably satisfy
this condition. However, if the substrate is a large molecule and the reaction occurs
in vivo, Assumption 2 may easily be violated. In this case, it seems to be more rea-
sonable to include in the set of assumptions something like a substrate conservation
expression, analogous to Assumption 1. Such an expression complicates the mathe-
matical formulation and results in a rate law of the form

vy = %[(Km+At+Et)—\/(Km+At+Et)2—4EtAt] (1.17)
(Goldstein 1944; Cha and Cha 1965; Reiner 1969, pp. 82-90), which is “not very
convenient” and “rather unwieldy” (Schulz, 1994, pp. 24-5).

If the substrate concentration is not available in essentially unlimited amounts,
the rate law becomes a function of time. Schulz (1994, p. 25) proposed to sim-
plify the differential equation model with a model of product synthesis that has the
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form

p) = —KikebrSr | kikeErSt (e brthotbiSr _ 1y (1.18)
ko1 +ky +kiAr (ki 4+ ko + ki S7)?
This model is approximately quadratic in the millisecond domain and becomes es-
sentially linear in the range of seconds and minutes. Even though noticeably more
complex than the original rate law, Schulz warns that this formulation cannot be
entirely valid either. The product concentration cannot grow indefinitely, as the ap-
proximate differential equations and this solution would predict, but should show
sigmoidal, saturated dynamics.
Schnell and Mendoza (1997) pursued a different approach. They developed a
closed-form solution of the Michaelis—Menten reaction scheme for the entire time
course of substrate. Their result is

[S'1(2) = w([So] exp(—kt + [Sy]), (1.19)

where w is the Omega function (Wright 1959; Corless et al. 1996), which satisfies the
transcendental equation w(x)exp(w(x)) = x, [S'] = [S]/Ku is the “reduced concen-
tration,” and k = Vjy.x/ Ky is the first-order rate constant. The subscript zero refers
to the initial concentration.

Heinrich and Schuster (1996) and Schnell and Maini (2000) provided good reviews
of work treating the quasi-steady-state assumption (QSSA). Earlier analyses by Segel
(1988) and Segel and Slemrod (1989) resulted in a succinct condition for the validity
of the QSSA in vitro:

[Eo]
Km + [SO]

In vivo, this condition tends to break down (Sols and Marco 1970), motivating Segel
and Slemrod (1989) to propose a reverse QSSA, in which the substrate, rather than
the enzyme is in a quasi-steady state with respect to the overall reaction.

Schnell and Maini (2000) asked what might happen if S is #ot much higher than
E. They started with elemental chemical kinetics and assumed that the reverse QSSA
is valid. The solution for the entire time course then is

< 1. (1.20)

[S1(2) = [So] exp(—ki[Eo] 1) + ﬁf,z[f]‘” (exp(—kat) — exp(—ks [Eol ), (1.21)
LES)I(E) = [So](exp(—kat) — expl—ki[Eol 1), (122)

where Kg =k_1/k; is the equilibrium dissociation constant of S from the inter-
mediate substrate—enzyme complex. This solution closely approximates numerical
solutions of the original differential equation system describing the mechanistic
Michaelis—Menten scheme. Schnell and Maini showed that the reverse QSSA is sat-
isfied if K1 and [Sp] are both much smaller than [ Ey].

In summary, the algebraic Michaelis—Menten rate law is very useful and valid if
the substrate is not limiting and the QSSA is satisfied. If this is not the case, substrate
and product concentrations are functions of time, and the dynamic time courses
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Figure 1.5. Scheme of an ordered bi-bi sequential model of the reaction A+ B=P + Q.

of P(¢) and S(¢) become complicated. If the reverse QSSA is satisfied, S(¢) can be
approximated, but the solution is still much more complicated than the original rate
law.

Mathematical Convenience

In its original form, the Michaelis—Menten rate law is compact and easy to use,
analyze, and interpret. Even some generalizations, for instance accounting for com-
petitive inhibition of the reaction, are easily implemented, and the result retains its
simple algebraic character. However, if several substrates or reactions are involved,
and if several modulators affect the pathway, the rate law quickly becomes unwieldy.

As an example, consider a reversible ordered bi-bi sequential reaction scheme as
shown in Figure 1.5. The reaction is called ordered because the binding between
enzyme and substrates and the dissociation of products from the enzyme occur in
a sequential fashion rather than at random. Specifically, the first step binds sub-
strate A and the enzyme, followed by association of the complex EA with substrate
B. The three-component complex EAB is converted into EPQ, a process that in-
volves no interaction of the enzyme with a reactant and therefore does not appear
in the rate law. Product P must dissociate from the complex before Q. Examples
of this mechanism include some pyridine nucleotide dehydrogenases (Schulz 1994,
p. 60).

The reaction involves only two substrates and two products, yet the kinetic repre-
sentation in the tradition of Henri, Michaelis, Menten, Briggs, and Haldane is already
quite complicated (Figure 1.6).

If the reaction involves inhibitors and other modulators, the complexity of the
rate law becomes overwhelming. Savageau (1976, p. 75) illustrates this with the en-
zyme glutamine synthetase, which is affected by at least eight reactants and modifiers
(Woolfolk and Stadtman 1967). Even under the restrictive assumption that none of
the reactants or modifiers enters the rate law with a power higher than one, this
rate law would consist of about 500 terms and would take at the order of one hun-
dred million experimental assays to establish. It is hard to imagine that mathematical



